Pimpri Chinchwad Education Trust's PIMPRI CHINCHWAD COLLEGE OF ENGINEERING

SECTOR NO. 26, PRADHIKARAN, NIGDI, PUNE 411044

An Autonomous Institute Approved by AICTE and Affiliated to SPPU, Pune

DEPARTMENT OF COMPUTER ENGINEERING

Curriculum Structure and Syllabus

of

Honors in Deep Learning

(Course 2020)

Effective from Academic Year 2023-24

(Updated with minor changes)

Institute Vision

To be one of the top 100 Engineering Institutes of India in coming five years by offering exemplarily Ethical, Sustainable and Value Added Quality Education through a matching ecosystem for building successful careers.

Institute Mission

1. Serving the needs of the society at large through establishment of a state-of-art Engineering Institute

2. Imparting right Attitude, Skills, Knowledge for self-sustenance through Quality Education

3. Creating globally competent and Sensible engineers, researchers and entrepreneurs with an ability to think and act independently in demanding situations

Quality Policy

We at PCCOE are committed to impart Value Added Quality Education to satisfy the requirements. applicable needs and of the Students expectations and Stakeholders. We shall strive for academic excellence, professional competence and social commitment in fine blend with innovation and research. We shall achieve this by establishing and strengthening stateof- the-art Engineering and Management Institute through continual improvement in effective implementation of Quality

Management System.

A) Board of study - Department of Computer Engineering

Sr. No.	Name of the Course	Course Code	Page number	Signature and stamp of BoS
1	Neural Networks and Deep Learning	HCE5981	5	
2	Deep Learning Laboratory	HCE5982	7	
3	Deep Learning and Applications	HCE6981	11	
4	Deep Learning Modelling Laboratory	HCE6982	13	
5	Project Stage - I	HCE7981	16	
6	Project Stage - II	HCE8981	18	

Approved by Academic Council:

Chairman, Academic Council Pimpri Chinchwad College of Engineering

Approved by Board of Governors:

Chairman, Board of Governors Pimpri Chinchwad College of Engineering

Preface

Looking at Global Scenario to enhance the employability skills and impart deep knowledge in emerging/ multidisciplinary areas, an additional avenue is provided to passionate learners through the Minors and Honours Degree Scheme in academic structure.

For **Honors degree** program, student has to earn additional 20 credits in emerging area of one's own domain.

Objectives of Honors Degree

- To enable students to pursue allied academic interest in contemporary areas.
- To provide effective yet flexible options for students to achieve basic to intermediate level competence in the contemporary area.
- To enhance the employability skills with different combinations of competencies and flavors.
- To provide an academic mechanism for fulfilling demand of specialized areas from industries for higher order skill jobs.
- To provide a strong foundation to students aiming to pursue research/ higher studies in the contemporary field of study.

"Knowledge Brings Freedom"

Progress Credibility Confidence Optimism Excellence

Preface of Honors in Deep Learning

The growth in AI is owed to the fact that quintillions of data is generated each day, which makes these technologies more relevant, stronger and beneficial in today's age. Virtual assistants, translators, chatbots, driverless vehicles, and many more applications are the result of these futuristic technologies. The Deep Learning approach of AI provides a foundation for problem solving that impacts virtually all areas of the economy, including science, engineering, medicine, banking, finance, sports and the arts. Deep learning is an interdisciplinary field that mimics the functioning of the human brain to find correlations and patterns by processing data with a specified logical structure. Deep learning models use multiple hidden layers in the neural network as opposed to traditional neural networks that only contain a handful of hidden layers. Deep learning algorithms map inputs to already learned data to deliver an accurate output. The concept underpinning this technology is very similar to how our brain functions (biological neural networks). Deep learning models are trained by using large sets of labeled data and neural network architectures that automate feature learning without the need for manual extraction.

Learning Objective

Honors courses in Deep Learning will enable learners to build expertise in Deep Learning, starting from essential theoretical foundations to learning how to apply them in the real world effectively. The programme creates a practical understanding of how Deep learning algorithms can be developed and optimized for hardware. Such systems can be used in cutting edge research where power and performance are the major constraints. The start of course will cover the foundation of Neural networks and Deep learning. Each unit will cover different models starting off with fundamentals such as Linear Regression, and logistic/softmax regression. Followed by Feedforward deep neural networks, the role of different activation functions, normalization and dropout layers. Then Convolutional Neural Networks and Transfer learning will be covered. Finally, several other Deep learning methods will be covered. The laboratory sessions will cover fundamentals of deep learning and its applications including speech, text, image, and video processing. The advanced stage of course will cover the practice of essential tools such as Tensorflow, Keras, PyTorch etc. It also includes project work for learners to implement and develop problem solving abilities for real problems.

What you will learn

- Build ML models with NumPy & scikit-learn, build & train supervised models for prediction & binary classification tasks (linear, logistic regression)
- Build & train a neural network with TensorFlow to perform multi-class classification, & build & use decision trees & tree ensemble methods
- Apply best practices for ML development & use unsupervised learning techniques for unsupervised learning including clustering & anomaly detection
- Build recommender systems with a collaborative filtering approach & a content-based deep learning method & build a deep reinforcement learning model

Learning Outcome

The course will teach you how to develop deep learning models using recent frameworks. The course will start with introduction to the DL framework. Then each section will cover different models starting off with fundamentals such as Linear Regression, and logistic/softmax regression. Followed by Feedforward deep neural networks, the role of different activation functions, normalization and dropout layers. Then Convolutional Neural Networks and Transfer learning will be covered. Finally, several other Deep learning methods will be covered.

After completing this course, learners will be able to:

- Apply and Demonstrate the knowledge of Deep Neural Networks and related machine learning methods
- Use the Python libraries for Deep Learning applications
- Build Deep Neural Networks using recent DL frameworks
- Evaluate the performance of DL models on bench mark and real world datasets

INDEX

Sr. No.	Content	Page No.
1	List of Abbreviations in Curriculum Structure	1
2	Curriculum Structure	2
3	Course Syllabus of Semester – V Courses	4
4	Course Syllabus of Semester – VI Courses	10
5	Course Syllabus of Semester – VII Courses	15
6	Course Syllabus of Semester – VIII Courses	17
7	Vision and Mission of Computer Engineering Department	19

Sr. No.	Abbreviation	Expansion
1.	L	Lecture
2.	Р	Practical
3.	Т	Tutorial
4.	Н	Hours
5.	CR	Credits
6.	IE1	Internal Evaluation 1
7.	IE1	Internal Evaluation 2
8.	ETE	End Term Evaluation
9.	TW	Term Work
10.	OR	Oral
11.	PR	Practical
12.	PROJ	Project

Curriculum Structure

Honors in Deep Learning

CURRICULUM STRUCTURE

Structure for Honors in Deep Learning (Computer Engineering)

	Course		Т	eachin	g Sche	me	CD			Evalua	ation S	cheme	1	
Semester	code	Course Name	L	Р	Т	Н	CR	IE1	IE2	ETE	TW	PR	OR	Total
V	HCE5981	Neural Networks and Deep Learning	3	-	-	3	3	20	30	50	-	-	-	100
V	HCE5982	Deep Learning Laboratory	-	4	-	4	2	-	-	-	50	-	-	50
VI	HCE6981	Deep Learning and Applications	3	-	-	3	3	20	30	50	-	-	-	100
VI	HCE6982	Deep Learning Modelling Laboratory	-	4	-	4	2	-	-	-	50	-	-	50
VII	HCE7981	Project Stage - I	-	10	-	10	5	-	-	-	100	-	50	150
VIII	HCE8981	Project Stage - II	_	10	-	10	5	-	-	-	100	-	50	150
		Total	6	28	0	34	20							600

L-Lecture, P-Practical, T-Tutorial, H-Hours, Cr-Credits, IE Internal Evaluation, ETE-End Term Evaluation, TW-Term Work, OR-Oral, PR-Practical

Course Syllabus Semester – V Honors in Deep Learning

Program:	B. Tech. (C	omputer) - Ho	nors in Deep L	earning	Semeste	r: V	
Course:	Neural Net	works and Dee	p Learning		Code: H	ICE5981	
	Teaching	g Scheme			Evaluatio	on Scheme	
Lecture	Tutorial	Credit	Hours	IE1	IE2	ETE	Total
03	-	03	03	20	30	50	100
Prior knowle is essential.	edge of Linear Algebra	and Univariate	Calculus, Mach	ine Learning, P	rogramming and	d problem solvin	ıg
Course Obje	ctives:						
1. To fi 2. To fi 3. To fa 4. To e	ntroduce basics ntroduce the fun amiliarize differ xplain functioni	damental techn ent models in N ng of deep neur	iques and principal princi	iples of Neural 1 s(CNN,ANN,R)	Networks NN) and their aj	oplications	
Course Outc	omes:						
1. Disti 2. Desi 3. Appl 4. Eval	nguish different gn Feed Forwar ly deep learning uate model perf	t types of NN and d Neural Network techniques to p ormance and in	rchitectures. ork architecture oractical probler terpret results.	for research prons.	oblems.		
			Detailed	Syllabus			
Unit			Desc	ription			Duration (H)
I	Introduction Evolution of A ML/DL proje	to Deep Learn AI, Machine Le ect, Application	ling arning vs Deep s of Deep Learr	Learning, Deep ning,	Learning types	s, Stages in	07
	Fundamenta	ls of Neural Ne	etworks:				
Π	Introduction t activation fun	to Neural Netw ctions.	ork, Model of	Artificial Neuro	on, Learning ru	les and various	07
	Neural Netwo	ork Architectu	re:				
	Single layer F Networks.	eed-forward ne	tworks. Multi-l	ayer Feed-forwa	ard networks. R	ecurrent	08
IV	Back propag	ation Network	s:				07
1 V	Back Propaga propagation L	tion networks, earning, Variat	Architecture of ion of Standard	Back-propagati Back propagati	ion (BP) Netwo	orks, Back-	U/

	Deep Neural Networks:	
V	Introduction to Deep Neural Networks, training deep models, Training Deep Neural Networks using Back Propagation-Setup and initialization issues, Gradient- Descent Strategies, vanishing and exploding Gradient problems, regularizations, dropouts.	08
	Convolutional Neural Networks:	
VI	Basic structure of Convolutional Network, Convolutions for Images, Padding and Stride, Multiple Input and Multiple Output Channels, Pooling, FCNN Case study: Image classification using CNN.	08
	Total	45
Text Books:		
1. S.Ra	ajasekaran and G.A. Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algo	rithms", PHI

Learning Pvt. Ltd., 2003, ISBN:978-81-203-2186-1.2. Aston Zhang, Zachary C. Lipton, Mu Li, and Alexander J. Smola, "Dive into Deep Learning", Amazon Science, 2021.

Reference Books:

- Jacek M. Zurada, "Introduction to artificial neural systems", West Publishing Co., 1992, ISBN: 0-3 14-93391 -3.
- 2. Goodfellow I., BengioY., and Courville A., "Deep Learning", MIT Press, 2016, ISBN: 978-0262035613.
- 3. Bishop C. M., "Pattern Recognition and Machine Learning", Springer, 2006, ISBN: 978-0-387-31073-2.

Depa

Program:	B. Tech. (Con	mputer) - Hono	ors in Deep Lear	ning	Semester	r: V	
Course:	Deep Learnin	ng Laboratory			Code: H	CE5982	
	Teaching	g Scheme		Deep Learning Semester: V Code: HCE5982 Evaluation Scheme Iours TW PR OR Total 4 50 - - 50 ogramming language, Working with an anaconda environment, anaconda environments. op neural networks. te accuracy of the model. ts on structured data or on unstructured data. trained model. : on structured or unstructured data urning problems. lassification problems. berformance of the model. oratory Data Analysis. train network.			
Practical	Tutorial	Credit	Hours	TW	PR	OR	Total
4	-	2	4	50	-	-	50
Prior knowle Mach Mana is essential.	dge of nine learning alg aging the python	orithms and Pyt packages and n	hon programming nultiple anaconda	g language, Wo environments.	orking with an an	aconda environ	ment,
Course Objec	ctives:						
 To ill To in To en To en To en 	lustrate simple not terpret the mode splain different p splain how to pre-	eural networks a l results and and preprocessing op edict the results	and deep neural n alyze the accuracy perations on struc using a trained m	etworks. y of the model. tured data or or odel.	unstructured da	ıta.	
Course Outco	omes:						
 Desig Demi Interj Appl Imple 	gn neural networ onstrate binary a pret the model re y statistical conc ement, train, and	k layers for vari s well as multi- sults and analyz epts and perfort validate their o	ous learning prob class classification the performance n Exploratory Da wn neural networ	olems. on problems. ee of the model. ata Analysis. k.			
uidelines for	Students:						
 The Certi Each descri Progr 	aboratory assign ficate, table of co assignment wri iption, Conclusion ram codes with s	nments are to be ontents, and han te-up should ha on, Assessment ample output of	e submitted by st dwritten write-up we Title, Objecti grade/marks and all performed as	udents in the fo of each assign ves, Outcomes assessor's sign signments are t	orm of a journal ament. , Theory- Conce o be submitted a	. Journal consis ept in brief, dat s softcopy.	sts of prologu taset used, da
uidelines for	Laboratory /T	W Assessment:					
 Cont stude Each weig Sugg comp 	inuous assessmer nts. Laboratory assig htage. ested parameters pletion, performa	nt of laboratory gnment assessm s for overall asse nce, innovation	work is done bas ent should assign essment as well a , efficiency, punc	ed on overall p grade/marks b s each Laborato tuality, and nea	erformance and a ased on parameter ory assignment a attense.	Laboratory perf ers with approp ssessment inclu	Formance of riate
Guidelines for	Laboratory Co	onduction					
 Oper Progr Use of 	ating System rec ramming tools re of Anaconda plat	commended: - 6 commended: - 1 form is encoura	4-bit Open-source Python, OpenCV ged.	e Linux or its do	erivative		

Suggested List of Assignments

Assignment No.	Assignment Title
	Write a program to build a logistic regression classifier with a Neural Network mindset . Consider following
	guidelines.
1.	a. Consider any convenient dataset (Cats dataset etc.) and pre-process the dataset.
	b. Define the appropriate model structure.
	c. Evaluate the model performance.
	d. Analyse the obtained results
	Implement a multilayer perceptron (MLP) model for prediction such as house prices.
	a. Perform Exploratory Data Analysis
2.	b. Prepare dataset
	c. Build MLP model
	d. Evaluate Model performance
	e. Predict for test data
	Build a Multiclass classifier using the CNN model. Use MNIST or any other suitable dataset.
	a. Perform Data Pre-processing
	b. Define Model and perform training
	c. Evaluate Results using confusion matrix
3.	(OR)
	Design an object detection model using deep neural networks for simple objects.
	a. Select appropriate dataset and perform data pre-processing
	b. Define architecture in terms of layers
	c. Evaluate Model performance
	Label the object with appropriate text.
	Install OpenCv package on your system and perform following operations on images.
	a. Image Sharpening
4	b. Edge Detection & Image Gradients
4.	c. Cropping
	d. Blurring
	Background Subtraction Method
Reference Boo	oks:
1. Jacek	M. Zurada,"Introduction to artificial neural systems", West Publishing Co., 1992, ISBN: 0-3 14-93391 -3
2. Good	fellow I., BengioY., and Courville A., "Deep Learning", MIT Press, 2016, ISBN: 978-0262035613.
3. Bisho	p C. M., "Pattern Recognition and Machine Learning", Springer, 2006, ISBN: 978-0-387-31073-2

Web references:

- https://www.youtube.com/watch?v=oXlwWbU8l2o
 https://www.datacamp.com/community/tutorials/exploratory-data-analysis-python
 https://www.analyticsvidhya.com/blog/2020/02/learn-image-classification-cnn-convolutional-neural-networks-3datasets/

Course Syllabus Semester – VI Honors in Deep Learning

Program:	B. Tech. (Con	nputer) - Honors	s in Deep Learni	ng	Sem	nester: VI	
Course:	Deep Learnin	g and Applicatio	ons		Cod	le: HCE6981	
	Teaching	g Scheme			ŀ	Evaluation Schem	e
Lecture	Tutorial	Credit	Hours	IE1	IE2	ЕТЕ	Total
03	-	03	03	20	30	50	100
Prior knowl Line lang is essential.	edge of ar Algebra, Probab uage	ility Theory, Ma	chine Learning,	Artificial	l Neural	Network, Pytho	n programming
Course Obje	ectives:	tical foundations	, algorithms, and	methodol	ogies of	deep Learning.	
2. To 6 3. To 6	design and develop a elaborate various dee	n application-spe p unsupervised t	cific deep learnin echniques availab	g model. le in the	field of o	leep learning.	
1. Ider 2. Und 3. App 4. Use	the unsupervised de	les to create appli of different trans learning algorithm ep learning mode	cation-specific de fer learning mode ns for analyzing t ls and analyze the	eep learni ls he data fo e perform	ng mode or a varie ance	ls ety of problems.	
		D	etailed Syllab	us			Duration
Unit			Description				(H)
Ι	Deep Computer Image Classificat segmentation, Sin Application: Ima	Vision using Cor ion, Image Augr nilarity learning, l ge Classification/	nentation, Object mage captioning, Object Detection	al Netwo Detectio Generati	orks: on or lo ive mode	calization and els, Video analysis	07
II	Transfer Learnin Popular CNN Arc AlexNet, DenseN	ng: hitectures and Tr et, PixelNet.	ansfer learning Te	echniques	s: LeNet,	ResNet, VGGNe	t, 07
ш	Recurrent Neura Architectural Ove architectures – E Exploding Gradie Application: vide	I Networks: erview, Bidirectic Back-propagation nts, Long Short-T to to text	onal RNNs – End Through Time Ferm Memory Ne	coder-dec for train tworks, C	oder sec ning RN Bated rec	uence to sequence N, Vanishing an urrent Unit.	ee 08 d
IV	Deep Unsupervis Auto-encoders, D encoder. Applications: Ima	ed Learning: e-noising auto-en age generation	ncoders, Sparse a	uto-enco	ders, Va	riational Auto-	08

V	Generative Adversarial Networks(GANs) Introduction of GANs(Generative Modeling), Different Types of GANs, Components of GANs, Training and Prediction of GANs, Brief on GAN Loss Function, Challenges Faced by GANs, Application of GANs	07
VI	Natural Language Processing: Introduction to NLP, Word Vector representation, word2vec model, Continuous Skip- Gram model, Continuous Bag-of-Words model Application: Sentiment analysis	08
	Total	45

Reference Books:

- 1. Murphy, K. P., "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012.
- 2. Alpaydin, E., "Introduction to Machine Learning", MIT Press, Prentice Hall of India, 3rd Edition 2014.
- 3. Zaccone, G., Karim, M. R., Menshawy, A. "Deep Learning with TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.

Web references:

- 1. NPTEL:: Computer Science and Engineering NOC : Deep Learning- Part 1
- 2. Deep Learning Course (nptel.ac.in)

Depa

i i ogi ann.	B. Tech. (Co	mputer) - Hon	ors in Deep Lea	rning	Semester	: VI				
Course:	Deep Learni	ng Modelling l	Laboratory		Code: HCE6982					
	Teaching	g Scheme			Evaluation	n Scheme				
Practical	Tutorial	Credit	Hours	TW	PR	OR	Total			
4	-	2	4	50	-	-	50			
Course Obje	ctives:	ous tools and tec	hniques availab	e in the field of	deep Learning.					
2. 10 a	.ppiy an appropri	ate deep learnin	ig model for a gi	ven real world p	roblem.					
2. 10 a 3. To i	mplement variou	s deep unsuperv	ig model for a gi vised techniques	ven real world p available in the	roblem. field of deep lea	urning.				
2. 10 a 3. To i	omes:	s deep unsuperv	g model for a gi	ven real world p available in the	roblem. field of deep lea	urning.				
2. 10 a 3. To i Course Outc After learning 1. App	omes: g the course, the ly the recent tool	students will be s and technique	ag model for a gr vised techniques able to: s to implement of	ven real world p available in the	roblem. field of deep lea	arning.				
2. To a 3. To i Course Outco After learning 1. App 2. Exp	g the course, the ly the recent tool	students will be s and technique uate the perform	able to: s to implement of ance of differen	ven real world p available in the leep learning alg t transfer learning	roblem. field of deep lea gorithms ag models	urning.				
2. To a 3. To i Course Outo After learning 1. App 2. Exp 3. Imp	g the course, the ly the recent tool eriment and evalue	students will be s and technique uate the perform te algorithms for	able to: s to implement of ance of different or analyzing diffe	ven real world p available in the leep learning alg t transfer learning erent types of dat	roblem. field of deep lea gorithms ng models tasets available i	urning. n various doma	ins.			
2. To a 3. To i Course Outo After learning 1. App 2. Exp 3. Imp 4. Dev	g the course, the ly the recent tool eriment and evalu- lement appropria	students will be s and technique uate the perform te algorithms for ng models to end	able to: able to: s to implement of nance of different or analyzing diffe	ven real world p available in the leep learning alg t transfer learnin erent types of dat ruct the original	roblem. field of deep lea gorithms ng models tasets available in data.	urning. n various doma	iins.			
2. To a 3. To i Course Outo After learning 1. App 2. Exp 3. Imp 4. Dev Suidelines for	g the course, the ly the recent tool eriment and evalu- lement appropria elop deep learnir	students will be s and technique uate the perforn te algorithms for g models to end	able to: able to: s to implement of nance of different or analyzing diffe	ven real world p available in the leep learning alg t transfer learnin erent types of dat ruct the original	roblem. field of deep lea corithms ng models tasets available in data.	urning. n various doma	iins.			

- Continuous assessment of laboratory work is done based on the overall performance and Laboratory performance 1. of the students.
- 2. Each Laboratory assignment assessment should assign grade/marks based on parameters with appropriate weighta ge.
- 3. Suggested parameters for overall assessment as well as each Laboratory assignment assessment includetimely completion, performance, innovation, efficiency, punctuality, and neatness.

Guidelines for Laboratory Conduction

- Recommended Tools for the implementation of above assignments: Python, TensorFlow, Pytorch, MATLAB, etc. 1.
- Use of the Anaconda platform is encouraged. 2.

Suggested List of Assignments

Assignment No.

Assignment Title

1.	Apply a pre-trained network and apply it to a new task using transfer learning
	a) Use any three pre-trained models including AlexNet, GoogleNet, VGGNet, MobileNet, ResNet,
	DenseNet, etc.
	b) Fine-tune the hyper-parameters and compare their performance for a suitable application.
2.	Design RNN or its variant including LSTM or GRU
	a) Select a suitable time series dataset. Example – predict sentiments based on product reviews
	b) Apply for prediction
3.	Implement Auto-encoders for any of the task including:
	a) Data Compression
	b) Image de-noising
	c) Dimensionality reduction
4.	Design and implement Deep Convolutional GAN to generate images of faces/digits from a set of given
	images.

Reference Books:

- 1. Murphy, K. P., "Machine Learning: A Probabilistic Perspective", The MIT Press, 2012.
- 2. Alpaydin, E., "Introduction to Machine Learning", MIT Press, Prentice Hall of India, 3rd Edition 2014.
- 3. Zaccone, G., Karim, M. R., Menshawy, A. "Deep Learning with TensorFlow: Explore neural networks with Python", Packt Publisher, 2017.

Web references:

- 1. NPTEL :: Computer Science and Engineering NOC:Deep Learning- Part 1
- 2. Deep Learning Course (nptel.ac.in)

Course Syllabus Semester – VII Honors in Deep Learning

Program:	B. Tech. (Co	omputer) - Hon	Se	mester: VII				
Course:	Project Stag	ge - I	C	Code: HCE7981				
Teaching Scheme				Evaluation Scheme				
Practical	Tutorial	Credit	Hours	TW	PR	OR	Total	
10	-	5	10	100	-	50	150	

Course Objectives:

- 1. To apply the knowledge for solving real world problems.
- 2. To develop problem solving abilities.
- 3. To search information for project work from appropriate sources such as manuals, books, research journals and from other sources, and in turn increase analytical skills.
- 4. To formulate and analyze the problems to be solved in the existing literature.
- 5. To work in a team and learn professionalism.

Course Outcomes:

After learning the course, the students will be able to:

- 1. Identify the realistic problem of societal, industry or research relevance.
- 2. Summarize case studies based on the literature and prepare literature reviews relevant to problem statements.
- 3. Identify the gap to define the problem statement of a project.
- 4. Design and analyze a problem by applying domain knowledge.
- 5. Demonstrate knowledge and coordinate effectively in a team.

Project work guidelines:

- The student is expected to initiate the project work in semester VII, and complete the project work up to the design phase. So in this semester, the student shall complete the partial work of the Project which will consist of problem statement, literature review, SRS, Model and Design.
- In Project Stage -I the student shall complete the project work which consists of a presentation on the advancement in technology pertaining to the selected project topic.
- The student shall prepare and submit the progress report of Project work stage -I in standard format for satisfactory completion of the work that is the duly certified by the concerned guide (Internal External (in case of sponsored project)/ Co-Guide (in case of interdisciplinary project)) and head of the Department/Institute.

Course Syllabus Semester – VIII Honors in Deep Learning

Program:	B. Tech. (Co	mputer) - Hono	Semester	Semester: VIII			
Course:	Project Stag	e - II	Code: H	Code: HCE8981			
Teaching Scheme				Evaluation Scheme			
Practical	Tutorial	Credit	Hours	TW	PR	OR	Total
10	_	5	10	100	-	50	150

Course Objectives:

- 1. To follow SDLC meticulously and meet the objectives of proposed work.
- 2. To apply recent tools and techniques.
- 3. To develop the solutions and conduct experimentations.
- 4. To validate and evaluate the work undertaken.
- 5. To consolidate the work as a furnished report.
- 6. To present project management skills in a team.

Course Outcomes:

After learning the course, the students will be able to:

- 1. Identify technical ideas and its relevance in recent tools and technologies.
- 2. Implement the methods relevant to the problem statement.
- 3. Critically analyze the results and their interpretation.
- 4. Demonstrate working models and prepare good quality technical reports.
- 5. Present knowledge of team work.

Guidelines for Project Stage -II:

- In Project Work Phase–II, the student shall complete the remaining project work which consists of Selection of Technology and Tools, Installations, UML implementations, testing, results, performance discussions using data tables per parameter considered for the improvement with existing/known algorithms/systems and comparative analysis and validation of results and conclusions.
- The student shall prepare and submit the report of Project work in standard format for satisfactory completion of the work that is duly certified by the concerned guide and head of the Department/Institute.

Vision and Mission of Computer Department

Department Vision

To be a premier Computer Engineering program by achieving excellence in Academics and Research for creating globally competent and ethical professionals.

Department Mission

M1: To develop technologically competent and self-sustained professionals through contemporary curriculum.

M2: To nurture innovative thinking and collaborative research, making a positive impact on society.

M3: To provide state-of-the art computing environment and learning opportunities through Center of Excellence.

M4: To foster leadership skills and ethics with holistic development.